Resistance to Fusarium head blight and seedling blight in wheat is associated with activation of a cytochrome p450 gene.
نویسندگان
چکیده
ABSTRACT One plant genotype displays a resistance phenotype at one development stage but a susceptible reaction to the same pathogen at another stage, which is referred to here as resistance inversion. In wheat, Fusarium head blight (FHB)-resistant cv. Sumai3 showed a Fusarium seedling blight (FSB)-susceptible reaction whereas FHB-susceptible cv. Annong8455 exhibited FSB resistance when challenged with a Fusarium asiaticum strain that produces deoxynivalenol (DON). The resistance to FHB and FSB in wheat was closely associated with expression of a plant cytochrome P450 gene in response to FHB pathogens and mycotoxins. Quantitative real-time polymerase chain reaction analyses showed that expression of nine defense-related genes in spikes and seedlings was induced by the fungal infection, in which a massive accumulation of a plant cytochrome P450 gene, CYP709C1, was clearly associated with the resistance reaction in both seedling and spike. The FHB-resistant Sumai3 accumulated 7-fold more P450 transcripts than did the FHB-susceptible Annong8455, while 84-fold more P450 transcripts were accumulated in the FSB-resistant Annong8455 than the FSB-susceptible Sumai3. A Fusarium strain with a disrupted Tri5 gene, which is not able to produce the first enzyme essential for trichothecene mycotoxin biosynthesis, also induced more P450 transcripts in FHB- and FSB-resistant cultivars. The fungal activation of the P450 gene was more profound in the FSB-resistant reaction than the FHB-resistant reaction relative to their susceptible counterparts. DON triggered a differential expression of the P450 gene with comparable patterns in spikes and seedlings in a resistance-dependent manner. These results may provide a basis for dissecting mechanisms underlying FHB and FSB resistance reactions in wheat and revealing functions of the cytochrome P450 in plant detoxification and defense.
منابع مشابه
Mapping and Expression Analysis of a Fusarium Head Blight Resistance Gene Candidate Pleiotropic Drug Resistance 5 (PDR5) in Wheat
Fusarium head blight (FHB) caused by Fusarium graminearum is a serious disease of wheat (Triticum aestivum L.), through which grain quality losses are induced by fungal trichotecene mycotoxins such as deoxynivalenol (DON). A class of plasma membrane localized ABC transporter proteins related to the yeast PDR5 (pleiotropic drug resistance5) efflux pump seems to be responsible for partial resista...
متن کاملResistance Gene Analog Polymorphism (RGAP) Markers Co-Localize with the Major QTL of Fusarium Head Blight (FHB) Resistance, Qfhs.ndsu-3BS in Wheat
Resistance gene analog polymorphism (RGAP) markers linked to Fusarium head blight resistance (FHB) and co-localize with Qfhs.ndsu-3BS were identified using F3 plants and F3:5 lines derived from a ‘Wangshuibai’ (resistant) / ‘Seri82’ (susceptible) cross. The mapping populations were genotyped using 50 degenerate primers designed based on the known R genes. Out of the 50 designed primer combinati...
متن کاملPhylogeny and genetic diversity of Fusarium graminearum species complex associated with Fusarium head blight of wheat in Moghan plain (Iran)
Thirty-seven isolates of Fusarium graminearum species complexobtained from wheat heads with Fusarium head blight symptoms were selected and used for phylogenetic studies. They were collected from different localities of Moghan plain (Ardebil province, Iran). Partial sequences of translation elongation factor 1-alpha (TEF), putative reductase (RED) and UTP-ammonia ligase (URA) genes were amplifi...
متن کاملEvaluation of Resistance to Zymoseptoria tritici Blotch andFusarium Head Blight in Some Genotypes of Bread Wheat
Using resistant cultivars is an effective method in management Zymoseptoria tritici Blotch and Fusarium Head Blight of wheat. This study was conducted to identify new sources of resistance to these diseases among a large number of Iranian cultivars and new wheat genotypes. The genotypes were cultivated in an augment design in the research farm of Aliabad Katoul Agricultural School. Artificial c...
متن کاملEnzymatic detoxification of Don in transgenic plants via expression of Fusarium graminearum Tri101 gene
Fusarium graminearum is causal agent of economically catastrophic disease of cereal Fusarium Head Blight (FHB) around the world. In addition to causing a loss of yield, this fungus causes serious threats to humans and animals due to the contamination of grain with the trichothecene mycotoxin. TRI101 gene, a Fusarium spp. gene, encodes an enzyme that transfers an acetyl group to the C3 hydroxyl ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Phytopathology
دوره 100 2 شماره
صفحات -
تاریخ انتشار 2010